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Chapter 1

Introduction

This is the theory manual for VirtualBow, an open-source software tool for simulating
bow and arrow physics. For the latest version of the software and this document visit

http://www.virtualbow.org/.

This documentation is about the theoretical foundations and technical details of the
software. It is still a work in progress and is meant as a reference for developers and
interested users.
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Chapter 2

The Bow Model

A scientific model is a simplification and abstraction of reality, often formulated in a
mathematical way. A good model reduces the complexity of a real system by including
only its most significant aspects and disregarding less significant ones. Analyzing this
simplified model can then lead to conclusions about the real system that wouldn’t have
been possible otherwise.

What aspects of reality a model has to reflect depends on the kinds of questions it seeks
to answer. The first step for developing a bow model is therefore to clarify its scope and
intended application.

2.1 Scope of the Model

In the case of VirtualBow the purpose of the bow model is to give users the ability to
evaluate the bow designs they come up with. So what characteristics make a bow design
a good one and what are their implications for the bow model? Many things come to
mind, but we limit ourselves to the following three categories:

1. Viability: Can the design be realised? Do the materials withstand the arising loads
when the bow is being used? To be able to judge this the model has to accurately
predict the distribution of stress across the limbs as well as the tensile forces in the
string that arise when drawing and shooting the bow.

2. Performance: Important performance characteristics are the arrow’s velocity, ki-
netic energy and the bow’s degree of efficiency, i.e. the percentage of the stored
elastic energy that is converted into kinetic energy of the arrow during the shot.
To capture these things the model has to reflect all major mechanisms of efficiency
loss in a bow. We will later see what those are when we look at scientific research.

3. Comfort: Viability and raw performance aren’t everything. A bow design will also
be judged by it’s influence on the archer, like the draw force, the shape of the draw
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curve (no ”stacking”, i.e. increasing stiffness towards the end of draw) and the
dynamic forces exerted to the shooter (”hand shock”).

Any physical effects in archery that don’t (significantly) affect one of those categories
above are outside the scope of VirtualBow and the bow model doesn’t need to include
them. Exterior ballistics is an example for this, another one is the bending motion of the
arrow (Archer’s Paradox).

Now the next question is: How does a bow model have to look like in order to capture
the things listed above? That’s not easy to answer, but luckily there has been done quite
some scientific research about bow and arrow physics in the past, so we don’t have to
start completely from scratch. The next section therefore examines some of that research
before we define our own model.

2.2 Literature Review

Research about the mechanics of bow and arrow goes back to at least the 1930s, when
C.N. Hickman, P.E. Klopstek and others performed systematic experiments and developed
simple mathematical models. Without modern computers available these early models
were still limited in their complexity by what could be solved analytically. The focus was
therefore more on qualitative insight rather than accurate prediction. One of those early
models is the Hickman Model [1], published in 1937. It assumes two rigid limbs that are
connected to the stationary rest of the bow via elastic hinges as shown in figure 2.1. Even
though this is a huge simplification, this model can already be used to investigate the
efficiency of a bow, i.e. how it transfers its stored elastic energy to an arrow.

An important modification to the Hickman model was suggested by W.C. Marlow in
1980 [2]. It was already well-known that the original Hickman model with an inextensible
string severely overpredicted a bow’s degree of efficiency. (Predicted efficiencies typically
over 90% while measurements suggest values between 70% and 85% for most bows.)
Popular explanations for this discrepancy were effects like hysteresis and air resistance.
Marlow however found another reason: With an inextensible string (as in Hickman’s
original model) the arrow exits the bow exactly at brace height, where the limbs have zero
velocity. Only the kinetic energy of the string remains in the bow, the rest is transferred
to the arrow. Marlow then showed that accounting for the elasticity of the string shifts
the point of exit for the arrow away from the braced position, such that the limbs still
have substantial kinetic energy left. In his numerical example the modification reduces
the predicted efficiency to 78% as opposed to 92% previously. Of the energy remaining
in the bow, 11% were the kinetic energy of the limbs, 9% the kinetic energy of the string
and 2% the potential energy of limbs and string.

This leads to an important realization: The efficiency of a bow is mainly determined by
the kinetic energy that stays in the system due to mass and elasticity of the string and the
mass distribution of the limbs. The contribution of dissipative effects like air resistance
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Figure 2.1: Hickman model as used by W.C. Marlow [2]

and hysteresis to the overall efficiency was estimated by Marlow to be less than 2% and 3%
respectively.

The widespread availability of digital computers eventually made it possible to simulate
much more detailed models and therefore make more accurate predictions. Much notable
work in this area has been done by Dr. Bob Kooi and his co-authors. Over the course
of the 1980s and 90s they published a good amount of papers about the mechanics of
bow and arrow in which they utilize numerical methods to solve increasingly complex
mathematical models.

The first one of those papers is titled On the static deformation of a bow [3] and inves-
tigates the storage of deformation energy in bows with and without recurve. Figure 2.2
shows the model used there. The bow is assumed to be symmetric and has an inextensible
string. The limbs are represented by an Euler-Bernoulli beam, which is an infinitely thin,
elastic line with a certain (varying) bending stiffness for which the Euler-Bernoulli as-
sumptions hold. These are assumptions about the kinematics of the deformation, namely
that the cross sections of the beam always stay flat and perpendicular to its centerline.
This is typically a good approximation for slender beams, that is beams whose length is
much larger than their cross section dimensions. Kooi uses the general version of the
Euler-Bernoulli equation that accounts for arbitrarily large deformation. Combining this
with geometric constraints for the string and some boundary conditions leads to the bow’s
equations of equilibrium, a free-boundary value problem for a set of ordinary differential
equations. The equations of equilibrium are solved numerically for specific draw lengths
of the bow.
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Figure 2.2: Bow model used by Bob Kooi [3]

In subsequent papers titled On the mechanics of the bow and arrow [4] and On the
mechanics of the modern working-recurve bow [5] Kooi also considers the dynamic case.
Like Marlow he uses a linear-elastic string and assumes the arrow as a concentrated point
mass. The equations of motion for the system form a moving-boundary value problem
for a set of partial differential equations. They are solved numerically by using a finite-
difference method with complete discretization. (Both space and time are approximated
by a discrete ”grid” of values. The partial derivatives in the governing equations are then
approximated by finite difference quotients operating on those grid values. The resulting
large number of difference equations can then be solved with a computer program.)

In the paper On the Mechanics of the Arrow: Archer’s Paradox [6], Kooi refines his model
even more by including an elastic arrow with a sliding contact to the bow’s grip. This
makes it possible to analyze the Archer’s Paradox: The phenomenon of arrows going
around the grip of a bow by performing a bending motion in the horizontal plane. The
dynamics of the arrow are however treated partly decoupled from the bow’s dynamics:
Only the influence of the bow on the arrow’s motion is considered, the other way around
is neglected. This is in line with our assumption from section 2.1 that the bending motion
of the arrow doesn’t contribute much to a bow’s overall performance and is therefore out
of scope for our model.

2.3 Model Definition

We have now learned enough in order to define our own bow model. First of all a
few words on the general modeling approach. As we saw in the previous section, any
decently complex bow model cannot be solved analytically but has to be combined with
some sort of numerical method for calculating an approximate solution. Models based on
continuum mechanics (e.g. Euler-Bernoulli beam theory) always have an infinite number
of degrees of freedom and will eventually have to be approximated by a discrete system
with finitely many degrees of freedom in order to be solvable by a computer program.
This step is called discretization. Kooi for example, like a true mathematician, formulates
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the complete equations of motion for his continuous bow model and only then starts to
employ a discretization technique (in this case a finite difference method) to solve those
equations. This results in a clear separation between the mathematical model and the
numerical solution methods.

We’re going to use more of an engineering approach here instead and start with a discrete
system in the first place. We do this by constructing the continuous parts of the bow
from a large number of so-called finite elements. A finite element is an approximation of
a little part of a continuous structure, e.g. a beam or a bar, but with only finitely many
degrees of freedom, namely the displacements of the nodes at which the elements are
connected to each other. The more elements are used, the better the approximation gets
and the closer the results will be to the exact solution.

The finite element method leads to a (potentially large) system of ordinary differential
equations as the equations of motion, which can be solved by standard numerical methods
as we will see later.
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Figure 2.3: Finite element model of the bow

Figure 2.3 shows the finite element approximation of our bow model. Like Kooi’s model it
is symmetric with respect to the horizontal plane, assumes the limbs to satisfy the Euler-
Bernoulli assumptions and neglects any dissipative effects like air resistance and hysteresis.
The limbs are therefore made up of Euler-Bernoulli beam elements. A concentrated point
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mass is placed at the tips to account for any added weight, like overlays for example.

The string, as opposed to the limbs, only transfers longitudinal forces and is therefore
approximated by linear-elastic bar elements. We limit ourselves to linear elasticity for
pragmatic reasons: Obtaining the exact nonlinear stress-strain curve of a particular string
material is pretty difficult. Instead, any material nonlinearity (which can be the case
especially for modern synthetic materials) will have to be accounted for by using an
”average” stiffness. In the previous section we saw that the mass properties of the string
are fairly important, so in addition to the mass of the string itself there are two additional
point masses at the tips and center to account for things like servings, nocking point, etc.

The arrow is another point mass, as already justified earlier. It is connected to the string
by an ideal, frictionless contact without any release force. This means that the arrow will
be released as soon as the string doesn’t push against/accelerate it anymore.

Not shown in figure 2.3 are the contact elements that prevent the string nodes from
passing through the limb, thereby making it possible to simulate recurves. These are also
ideal contacts without any friction.

All in all, there are four different types of elements needed:

� Beam Elements (Limbs)

� Bar Elements (String)

� Mass Elements (Arrow + additional masses)

� Contact Elements (String to limb contact)

All of them have to account for arbitrarily large displacements and are therefore geomet-
rically nonlinear (even though all the materials are linear-elastic).

In the next chapters we will first show how the equations of motion for a finite element
system can be assembled from the equations of motion for the single elements. We will
then derive the equations of motion for the element types listed above. Finally we’re going
to discuss the numerical solution of those equations for the static and dynamic case and
how this is implemented in VirtualBow.
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Chapter 3

Equations of Motion

Consider a single, unconstrained finite element i with n degrees of freedom. Its config-
uration at time t will be described by the displacement vector ui(t) ∈ Rn containing
all positions and rotation angles of the nodes. The equation of motion for the kind of
elements we’re concerned with takes the form

M i üi + qi(ui, u̇i) = pi(t). (3.1)

This is a nonlinear ordinary differential equation of second order for the displacements.
M i ∈ Rn×n is called the element’s mass matrix, qi ∈ Rn is the vector of internal forces
depending on the displacements and their associated velocity (e.g. elastic forces, damping
forces, . . . ) and pi ∈ Rn is the vector of externally applied loads.

Now consider a finite element system that consists of a number of such elements that are
connected to each other in a certain way. If the overall system has a total of N degrees of
freedom, it’s configuration can be described by the global displacement vector u(t) ∈ RN .
The local element displacements ui are now no longer independent but instead directly
related to the global displacements of the system they are part of. In our case these
relationships can be written as

ui = T i u, (3.2)

where Ti ∈ Rn×N is a constant transformation matrix for the respective element. Using
the local equations of motion (3.1), the kinematic relationship (3.2) and some analytical
mechanics it can be shown [add citation] that the equation of motion of the overall system
takes the similar form

M ü+ q(u, u̇) = p(t). (3.3)
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where the global mass matrix M ∈ RN×N , internal forces q ∈ RN and external forces
p ∈ RN are calculated from the local element matrices as

M =
∑
i

T T
i M i T i, (3.4)

q =
∑
i

T T
i qi(T i u, T i u̇), (3.5)

p =
∑
i

T T
i pi. (3.6)

In practice, because of the way the element displacements are related to the overall
displacements, the transformation matrices T i only contain ones and zeros, effectively
describing a selection of entries. Therefore it is not actually necessary to carry out all the
matrix multiplications occurring above. Instead, the entries of the local matrices can be
directly added to the corresponding entries of the global matrices.

In order to solve the equations of motion for equilibrium we’re later going to need the
derivative of the internal forces with respect to the displacements, which is called the
tangent stiffness matrix K ∈ RN×N of the system,

K(u) =
∂q

∂u
(3.7)

It can be calculated from the element’s local tangent stiffness matrices Ki = ∂qi
∂ui

like
this,

K(u) =
∂q

∂u
=
∑
i

T T
i

∂qi
∂u

=
∑
i

T T
i

∂qi
∂ui

∂ui
∂u

=
∑
i

T T
i

∂qi
∂ui

T i

=
∑
i

T T
iKiT i.

For now this is all we have to know about the equations of motion of the finite element
system. What’s going to be needed next are the local equations of motion for the different
element types. Those are going to be derived in the next sections.
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3.1 Mass Element

The point mass is the most simple element. Figure 3.1 shows its definition: A mass m is
placed in a cartesian coordinate system. Its position is described by the displacements u0(t)
and u1(t) along the coordinate axes. The external forces p0(t) and p1(t) are acting in the
direction of the respective displacements.

Figure 3.1: Point mass element

The equation of motion for this system can be written down directly by using Newton’s
second law of motion:

[
m 0
0 m

]
︸ ︷︷ ︸

M

[
ü0

ü1

]
︸︷︷︸

ü

+

[
0
0

]
︸︷︷︸
q(u, u̇)

=

[
p0

p1

]
︸︷︷︸
p(t)

(3.8)

This immediately gives us the element’s mass matrix, internal forces (which are zero) and
external forces. Because the internal forces are zero, the tangent stiffness matrix is zero
as well:

K =
∂q

∂u
=

[
0 0
0 0

]
. (3.9)
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3.2 Bar Element

A bar only transfers forces in longitudinal direction, it has no bending stiffness. Figure 3.2
shows a bar with an initial length of L that is subjected to a normal force N which causes
it to elongate by ∆L.

Figure 3.2: Elongation of a bar under load

In order to simulate the damping properties of the string, a viscoelastic material model of
the form

σ = E ε+ η ε̇ (3.10)

is chosen. Here E is the elastic modulus and η the viscosity of the material. This model
is called the Kelvin-Voigt model and combines linear elastic and linear viscous behaviour.
The normal force in the bar given a constant cross section area A is therefore

N = σ A

= EAε+ ηA ε̇

=
EA

L
∆L+

ηA

L
∆L̇. (3.11)

The product EA is also called the longitudinal stiffness. The bar is now placed between
the two nodes A and B as shown in figure 3.3. Its configuration is described by the nodal
displacements u = (u0, u1, u2, u3)T.

The position vectors of the two nodes are given by

rA =

[
u0

u1

]
, rB =

[
u2

u3

]
. (3.12)

The mass of the element is assumed to be concentrated at the nodes, so that each of
them is carrying half of the total mass. This is called a lumped mass approach and will
later lead to a constant, diagonal mass matrix. For a bar with density ρ the mass of a
node is therefore 1

2
ρAL. With this in mind we can write down Newton’s second law of
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Figure 3.3: Bar element

motion for each of the two nodes,

ρAL

2
r̈A = qA + pA, (3.13)

ρAL

2
r̈B = qB + pB. (3.14)

Here, qA, qB are the elastic forces that the bar exerts to the respective nodes and pA, pB
are the externally applied loads. The elastic forces can be obtained by multiplying the
scalar normal force N in the bar (3.11) with the tangent vector of the connecting line
between the two nodes to account for the direction,

qA = N
rB − rA
|rB − rA|

, qB = −qA. (3.15)

The elongation ∆L can be calculated by subtracting the initial length of the element from
its actual length,

∆L = |rB − rA| − L, (3.16)

∆L̇ =
d

dt
|rB − rA| =

rB − rA
|rB − rA|

(ṙB − ṙA). (3.17)

Combining equations (3.13), (3.14) with (3.15), (3.16) and (3.17) leads to the element’s
equation of motion,

ρAL

2

[
r̈A
r̈B

]
+
ηA

L

[
ṙA − ṙB
ṙB − ṙA

]
+
EA

L

(
1− L

|rB − rA|

)[
rA − rB
rB − rA

]
=

[
pA
pB

]
. (3.18)

With (3.12) and the abbreviations ∆x = u2 − u0, ∆y = u3 − u1 this expands to
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ρAL

2


1

1
1

1


︸ ︷︷ ︸

M


ü0

ü1

ü2

ü3


︸ ︷︷ ︸

ü

+
ηA

L


−∆ẋ
−∆ẏ

∆ẋ
∆ẏ

+
EA

L

(
1− L√

∆x2 + ∆y2

)
−∆x
−∆y

∆x
∆y


︸ ︷︷ ︸

q(u, u̇)

=


p0

p1

p2

p3


︸ ︷︷ ︸

p

.

(3.19)

Note that the vector q of internal forces depends on the displacements in a nonlinear way
despite the bar itself being considered linear-elastic. The nonlinearity arises only from the
geometry of the arbitrarily large nodal displacements. This is called geometric nonlinearity
as opposed to material nonlinearity.

Deriving the internal forces with respect to u results in the tangent stiffness matrix

K =
∂q

∂u
=
EA

L

(
1− L√

∆x2 + ∆y2

)
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1



+
EA

(
√

∆x2 + ∆y2)3


∆x2 ∆x∆y −∆x2 −∆x∆y

∆x∆y ∆y2 −∆x∆y −∆y2

−∆x2 −∆x∆y ∆x2 ∆x∆y
−∆x∆y −∆y2 ∆x∆y ∆y2

 .

Similarly, deriving the internal forces with respect to u̇ results in the tangent damping
matrix

D =
∂q

∂u̇
=
ηA

L


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 .
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3.3 Beam Element

The beam element will be developed in several steps. First of all we will consider a
standard linear Euler-Bernoulli element for small deformations. Next we’re going to see
how laminated cross sections can be accounted for. Finally, the linear beam element will
be used as the base for a fully geometrically nonlinear element by means of a floating
frame of reference approach.

3.3.1 Linear Euler-Bernoulli Beam

Consider the beam element shown in figure 3.4. In the undeformed reference state it is
aligned with the x-axis and has an initial length of L. The deformed state of the element
is described by the (small) longitudinal and transversal displacements v(x, t) and w(x, t),
which are continuous functions of both time and the position along the x-axis.

Figure 3.4: Beam element in reference and deformed configurations

The finite element approach involves discretising this continuous displacement field by a
finite number of degrees of freedom. This is achieved by choosing the nodal dispace-

ments u(t) =
[
u0(t), . . . , u5(t)

]T
as the degrees of freedom and interpolating v(x, t)

and w(x, t) as

v(x, t) ≈ V (x)u(t), (3.20)

w(x, t) ≈W (x)u(t), (3.21)

with the shape functions V (x) and W (x). As can be seen from figure 3.4 the shape
functions have to be chosen such that the following boundary conditions in regards to the
nodal displacements are satisfied,
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v(0, t) = u0(t), w(0, t) = u1(t), w′(0, t) = u2(t),

v(L, t) = u3(t), w(L, t) = u4(t), w′(L, t) = u5(t). (3.22)

As the displacements were said to be small, the rotation angles of the nodes have been
assumed to be equal to the derivative w′ of the bending line here (small angle approxi-
mation). Most frequently, for this standard type of beam element, cubic polynomials are
used for W (x) and a linear ones for V (x). Coincidentally that is also the exact analytical
solution for the static deformation of the beam. The free constants in those polynomials
are determined by the boundary conditions (3.22). The results are given by [11] as

W (x) =



0
(1− x

L
)2 (1 + 2 x

L
)

x (1− x
L

)2

0
x2

L2 (3− 2 x
L

)

−x2

L
(1− x

L
)



T

, V (x) =


1− x

L

0
0
x
L

0
0



T

. (3.23)

We now have a kinematic description of the beam element that has only a finite number
of degrees of freedom. The vector of elastic forces q(u) for the system can be obtained
by differentiating the system’s total potential energy [13], which in turn can be calculated
by integrating the product of forces and deformations over the element length,

q(u) =
∂

∂u
V (u) =

∂

∂u

(
1

2

∫ L

0

[
N
M

]T [
ε
κ

]
dx

)
. (3.24)

Here, N and M are the normal force and the bending moment within the beam’s cross
sections, while ε and κ are the corresponding longitudinal strain and curvature of the
beam’s centerline. They are related to each other by the constitutive equation

[
N
M

]
=

[
Cεε Cεκ
Cεκ Cκκ

] [
ε
κ

]
. (3.25)

The constants Cεε, Cκκ and Cεκ are linear-elastic constants of the beam’s cross section
and will be determined later when we look at laminated beams. Combining the constitutive
equation (3.25) with (3.24), the elastic forces turn into

q(u) =
∂

∂u

(
1

2

∫ L

0

[
ε
κ

]T [
Cεε Cεκ
Cεκ Cκκ

] [
ε
κ

]
dx

)
. (3.26)
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The strain ε and curvature κ for this beam can be calculated as

ε(x, t) = u′(x, t) = V ′(x)u(t), (3.27)

κ(x, t) = w′′(x, t) = W ′′(x)u(t). (3.28)

Substituting these into equation (3.26) finally leads to the following expression for the
elastic forces,

q(u) =
∂

∂u

1

2
uT(t)

(∫ L

0

[
V ′(x)
W ′′(x)

]T [
Cεε Cεκ
Cεκ Cκκ

] [
V ′(x)
W ′′(x)

]
dx

)
︸ ︷︷ ︸

C

u(t)

 ,

= C u(t). (3.29)

The internal forces depend linearly on the displacements in a way that is determined by
the stiffness matrix C. Carrying out the integration yields

C =



1
L
Cεε 0 1

L
Cεκ − 1

L
Cεε 0 − 1

L
Cεκ

0 12
L3 Cκκ

6
L2 Cκκ 0 − 12

L3 Cκκ
6
L2 Cκκ

1
L
Cεκ

6
L2 Cκκ

4
L
Cκκ − 1

L
Cεκ − 6

L2 Cκκ
2
L
Cκκ

− 1
L
Cεε 0 − 1

L
Cεκ

1
L
Cεε 0 1

L
Cεκ

0 − 12
L3 Cκκ − 6

L2 Cκκ 0 12
L3 Cκκ − 6

L2 Cκκ

− 1
L
Cεκ

6
L2 Cκκ

2
L
Cκκ

1
L
Cεκ − 6

L2 Cκκ
4
L
Cκκ


. (3.30)

The next step will be to determine the elastic constants Cεε, Cκκ and Cεκ for the kind of
cross sections we’re interested in.
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3.3.2 Laminated Cross Sections

The following derivations have been adapted from [10] and [12]. Consider the laminated
cross section shown in figure 3.5. It is symmetric with respect to the y-axis, bends/rotates
around the z-axis and consists of a number of rectangular layers. Each layer has its own
density ρi and elastic modulus Ei. The geometry of the layers is given by their width wi,
height hi and center position yi.

Figure 3.5: Composite cross section and single layer

In Euler-Bernoulli beam theory the cross sections are assumed to stay flat and perpendic-
ular to the beam axis during deformation. We assume this to be true for our laminated
cross section as well. The distribution of longitudinal strain over the section is therefore
given by the continuous function

ε(y) = ε− κ y, (3.31)

where ε is the strain of the beam’s centerline in x-direction and κ its curvature around
the z-axis. The stress distribution however is not necessarily continuous, because each
layer can have a different elastic modulus. The stress within a layer is given by hooke’s
law as

σi(y) = Ei · ε(y), y ∈ [yi −
hi
2
, yi +

hi
2

]. (3.32)

In order to determine the elastic constants in the constitutive equation (3.25) we calculate
the normal force N and bending moment M acting on the cross section by integrating
the stresses (3.32) over the section’s area,
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N =

∫
A

σ dA =
∑
i

∫
Ai

σi dAi,

=
∑
i

∫
Ai

Ei ε(y) dAi =
∑
i

Ei

∫
Ai

(ε− κ y) dAi,

=

(∑
i

Ei

∫
Ai

dAi

)
ε−

(∑
i

Ei

∫
Ai

y dAi

)
κ,

=

(∑
i

EiAi

)
︸ ︷︷ ︸

Cεε

ε−

(∑
i

EiAi yi

)
︸ ︷︷ ︸

Cεκ

κ. (3.33)

The same can be done for the bending moment,

M = −
∫
A

y σ dA = −
∑
i

∫
Ai

y σi dAi,

= −
∑
i

∫
Ai

y Ei (ε− κ y) dA = −
∑
i

∫
Ai

(Ei ε y − Ei κ y2) dA,

= −

(∑
i

Ei

∫
Ai

y dAi

)
ε+

(∑
i

Ei

∫
Ai

y2 dAi

)
κ,

= −

(∑
i

EiAi yi

)
︸ ︷︷ ︸

Cεκ

ε+

(∑
i

Ei Ii

)
︸ ︷︷ ︸

Cκκ

κ. (3.34)

The elastic constants describing the relationship between forces and deformation for the
laminated cross section are therefore

Cεε =
∑
i

EiAi, Cκκ =
∑
i

Ei Ii, Cεκ = −
∑
i

EiAi yi. (3.35)

In the case of the rectangular layers shown above, area Ai and second moment of inertia Ii
evaluate to

Ai = wi hi, (3.36)

Ii = Ai

(
h2
i

12
+ y2

i

)
. (3.37)
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Later we’re also going to need the linear density (mass per unit length) of the laminated
beam. It can be calculated by summing the the densities of the individual layers,

ρA =
∑
i

ρiAi. (3.38)

Pretty straightforward.
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3.3.3 Floating Frame of Reference

The floating frame of reference formulation is an easy way to construct a geometrically
nonlinear finite element by reusing linear-elastic results. The beam element is going to use
a floating frame of reference approach based on [7] for the elastic forces, together with
a lumped mass matrix according to [8]. Key component is a floating frame of reference
that is attached to the element and translates/rotates along with it. The total motion of
the element is then described as a superposition of two parts:

� The arbitrarily large, nonlinear rigid body motion (translation, rotation) of the ref-
erence frame

� Small, linear-elastic deformations of the element with respect to its floating reference
frame

Therefore the elastic deformation of the element can be treated as linear (because it’s
small), but on the other hand the element is still allowed to undergo arbitrarily large,
nonlinear translations and rotations. Note that we only assume the elastic deformations
of the single elements to be small with respect to their frame of reference. A structure
composed of many such elements can still undergo large deformations as long as that
assumption is valid. (And it can always be made valid by using enough elements.)

Figure 3.6: Nodal displacements of the beam element

Let’s apply this approach to the beam element shown in figure 3.6. It has two nodes with
the (arbitrarily large) nodal displacements u = (u0, . . . , u5) measured against the {x, y}
coordinate system. The angle ϕ is a simple offset so that the rotation angles u2 and u5

don’t necessarily have to correspond to the beam axis. This helps in practice when two
adjacent elements share a node but are not tangential to each other.

We now introduce a floating frame of reference {x′, y′} as shown in figure 3.7. The x′-
axis passes through both of the nodes (secant system) and the coordinate origin is placed
at the left node. Within this reference system we now describe the elastic deformation
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with the three displacements e = (e0, e1, e2)T, where e0 is the longitudinal extension of
the beam and e1, e2 are the rotation angles of the nodes with respect to the x′-axis.

Figure 3.7: Floating frame of reference and elastic deformations

Now obviously the elastic displacements e depend on the overall displacements u in some
way, so the first thing we’ll do is express this kinematic relationship. We introduce the
auxiliary variables

∆x = u3 − u0, (3.39)

∆y = u4 − u1, (3.40)

ϕ = atan2

(
∆y

∆x

)
. (3.41)

Here, ϕ is the rotation angle of the floating reference frame. Using these abbreviations
we can calculate the elastic deformations by using some elementary geometry.

Calculating e0:

e0 =
√

∆x2 + ∆y2 − L (3.42)

Calculating e1:

sin (e1) = sin (u2 + ϕ− ϕ) = sin (u2) cos (ϕ− ϕ) + cos (u2) sin (ϕ− ϕ)

cos (e1) = cos (u2 + ϕ− ϕ) = cos (u2) cos (ϕ− ϕ)− sin (u2) sin (ϕ− ϕ)

e1 = arctan

(
sin (e1)

cos (e1)

)
(3.43)
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Calculating e2:

sin (e2) = sin (u5 + ϕ− ϕ) = sin (u5) cos (ϕ− ϕ) + cos (u5) sin (ϕ− ϕ)

cos (e2) = cos (u5 + ϕ− ϕ) = cos (u5) cos (ϕ− ϕ)− sin (u5) sin (ϕ− ϕ)

e2 = arctan

(
sin (e2)

cos (e2)

)
(3.44)

Putting all those together, the elastic deformations can be written as

e(u) =


√

∆x2 + ∆y2 − L
arctan

(
sin (u2) cos (ϕ−ϕ)+cos (u2) sin (ϕ−ϕ)
cos (u2) cos (ϕ−ϕ)−sin (u2) sin (ϕ−ϕ)

)
arctan

(
sin (u5) cos (ϕ−ϕ)+cos (u5) sin (ϕ−ϕ)
cos (u5) cos (ϕ−ϕ)−sin (u5) sin (ϕ−ϕ)

)
 . (3.45)

Having this out of the way, the vector of elastic forces q(u) for the element will be obtained
by differentiating the total potential energy V with respect to the displacements u,

q(u) =
∂V

∂u
. (3.46)

Now because we consider the beam as linear-elastic within its reference frame we can
express its elastic energy as the quadratic expression

V = eTC e, (3.47)

where C is the stiffness matrix of the beam. Its entries are a subset of the stiffness matrix
(3.30) that we derived earlier for the linear beam element,

C =
1

L

 Cεε −Cεκ Cεκ
−Cεκ 4Cκκ 2Cκκ
Cεκ 2Cκκ 4Cκκ

 . (3.48)

Using this expression for the beam’s energy, equation (3.46) becomes

q(u) =
∂V

∂u
=
∂V

∂e

∂e

∂u
=

(
∂e

∂u

)T

C e(u)

= J(u)TC e(u), (3.49)

with the jacobian matrix J(u) = ∂e
∂u

. Differentiating (3.45) gives us
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J(u) =
∂e

∂u
=

−J0 −J1 0 J0 J1 0
−J3 J2 1 J3 −J2 0
−J3 J2 0 J3 −J2 1

 , (3.50)

J0 =
∆x√

∆x2 + ∆y2
, J1 =

∆y√
∆x2 + ∆y2

,

J2 =
∆x

∆x2 + ∆y2
, J3 =

∆y

∆x2 + ∆y2
. (3.51)

As always, the element’s tangent stiffness matrix is obtained by differentiating the internal
forces:

K(u) =
∂q

∂u
=

∂

∂u

(
JT(u)C

)
e(u) + JT(u)C

∂e

∂u

=

[
∂JT(u)

∂u1

Ce(u), . . .
∂JT(u)

∂u6

Ce(u)

]
+ JT(u)C J(u). (3.52)

The partial derivatives of the jacobian matrix J are:

∂J

∂u0

=

−b0 −b2 0 b0 b2 0
−b5 b3 0 b5 −b3 0
−b5 b3 0 b5 −b3 0

 , ∂J

∂u2

= 0,
∂J

∂u4

= − ∂J
∂u1

,

∂J

∂u1

=

−b2 −b1 0 b2 b1 0
−b4 b5 0 b4 −b5 0
−b4 b5 0 b4 −b5 0

 , ∂J

∂u3

= − ∂J
∂u0

,
∂J

∂u5

= 0. (3.53)

With the abbreviations

a0 =
1

(∆x2 + ∆y2)
1
2

, a1 =
1

∆x2 + ∆y2

a2 =
1

(∆x2 + ∆y2)
3
2

, a3 =
1

(∆x2 + ∆y2)2
(3.54)

b0 = a2∆x2 − a0, b1 = a2∆y2 − a0, b2 = a2∆x∆y

b3 = 2a3∆x2 − a1, b4 = 2a3∆y2 − a1, b5 = 2a3∆x∆y (3.55)
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The mass matrix is constructed by lumping the total mass and inertia of the element to
the nodes, like before. The total mass is ρAL, using the linear density (3.38) of the
laminated cross sections. Each translational degree of freedom therefore carries half of
that mass. But the nodes also have a rotational degree of freedom each. As it turns
out, distributing the rotational inertia of a beam cannot be done in such a straightforward
way. There is simply no single ”solution”, only different approximations. One possibility,
according to [8], is to use the mass matrix

M = ρAL



1
2

1
2

αL2

1
2

1
2

αL2

 , (3.56)

where α ∈ ]0, 1/50] is a tunable parameter. Tests with the bow simulation suggest that the
choice of α barely has any influence on the results. Therefore the maximum value α = 1/50

has been chosen for numerical reasons.
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3.4 Contact element

The contact element is used to treat contact between a point and a surface. It uses a
simple penalty approach: If the distance between the point and the surface is positive,
there is no contact and nothing happens. But if the distance is negative, a contact force
proportional to the penetration is applied that pushes the point outwards. By selecting a
reasonably high contact stiffness the penetration can be kept small enough for all practical
purposes.

Figure 3.8: Contact element

3.4.1 Contact Detection

Contact detection 1: Bounding box test

xmin = min{x0 − h0, x1 − h1}
ymin = min{y0 − h0, y1 − h1}
xmax = max{x0 + h0, x1 + h1}
ymax = max{y0 + h0, y1 + h1}

Necessary conditions for P2 intersecting the segment:

xmin ≤ xP2 ≤ xmax

ymin ≤ yP2 ≤ ymax
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Contact detection 2: Exact contact detection

Coordinates of points Q0 and Q1:

Q0 =

[
x0 + h0 sin(ϕ0)
y0 − h0 cos(ϕ0)

]
, Q1 =

[
x1 + h1 sin(ϕ1)
y1 − h1 cos(ϕ1)

]
.

Define the four triangles

T0 : {P2, P0, Q0}, T1 : {P2, P1, P0}, T2 : {P2, Q0, Q1}, T3 : {P2, Q1, P1}

P2 lies inside the square if and only if all of the four triangles are oriented counter-clockwise.
[Citation needed]

A triangle {A,B,C} is oriented counter-clockwise if

(B − A)× (C − A) > 0,

⇔ (xB − xA)(yC − yA)− (yB − yA)(xC − xA) > 0.

Contact detection 3: Penetration

sin(α) =
e

|P2 −Q0|
=

(Q1 −Q0)× (P2 −Q0)

|Q1 −Q0||P2 −Q0|

⇔ e =
(Q1 −Q0)× (P2 −Q0)

|Q1 −Q0|

=
(xQ1 − xQ0)(yP2 − yQ0)− (yQ1 − yQ0)(xP2 − xQ0)√

(xQ1 − xQ0)2 + (yQ1 − yQ0)2

=
a1a4 − a2a3√

a2
1 + a2

2

With the abbreviations

a1 = x1 − x0 − h0 sin(ϕ0) + h1 sin(ϕ1)

a2 = y1 − y0 + h0 cos(ϕ0)− h1 cos(ϕ1)

a3 = x2 − x0 − h0 sin(ϕ0)

a4 = y2 − y0 + h0 cos(ϕ0)
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3.4.2 Contact Forces

Elastic forces

The potential energy of the system can be determined as

V =

∫ e

0

F (s) ds

which yields the vector of elastic forces

q(u) =
∂V

∂u
=
∂V

∂e

∂e

∂u
= F (e)

∂e

∂u
. (3.57)

Taking the derivatives:

∂e

∂u
=

∂

∂u

(
a1a4 − a2a3√

a2
1 + a2

2

)

=
∂

∂u

(
1√

a2
1 + a2

2

)
(a1a4 − a2a3) +

1√
a2

1 + a2
2

∂

∂u
(a1a4 − a2a3)

=
1√

a2
1 + a2

2︸ ︷︷ ︸
b1

(
a4
∂a1

∂u
− a3

∂a2

∂u
− a2

∂a3

∂u
+ a1

∂a4

∂u

)
︸ ︷︷ ︸

v1

+
a2a3 − a1a4

(a2
1 + a2

2)
3
2︸ ︷︷ ︸

b2

(
a1
∂a1

∂u
+ a2

∂a2

∂u

)
︸ ︷︷ ︸

v2

= b1v1 + b2v2

∂a1

∂u
=



−1
0

−h0 cos(ϕ0)
1
0

h1 cos(ϕ1)
0
0


,
∂a2

∂u
=



0
−1

−h0 sin(ϕ0)
0
1

h1 sin(ϕ1)
0
0


,
∂a3

∂u
=



−1
0

−h0 cos(ϕ0)
0
0
0
1
0


,
∂a4

∂u
=



0
−1

−h0 sin(ϕ0)
0
0
0
0
1


Tangent stiffness matrix
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K(u) =
∂q

∂u
=
∂F

∂u

(
∂e

∂u

)T

+ F (e)
∂2e

∂u2
=
∂F

∂e

∂e

∂u

(
∂e

∂u

)T

+ F (e)
∂2e

∂u2

∂2e

∂u2
=

∂

∂u
(b1v1 + b2v2) =

∂b1

∂u
vT

1 +
∂b2

∂u
vT

2 + b1
∂v1

∂u
+ b2

∂v2

∂u
∂b1

∂u
= − 1

(a2
1 + a2

2)
3
2

(
a1
∂a1

∂u
+ a2

∂a2

∂u

)
∂b2

∂u
=

√
a2

1 + a2
2

a6
1 + 3 a4

1 a
2
2 + 3 a2

1 a
4
2 + a6

2

((
2 a2

1 a4 − a2
2 a4 − 3 a1 a2 a3

) ∂a1

∂u

+
(
a2

1 a3 − 2 a2
2 a3 + 3 a1 a2 a4

) ∂a2

∂u
+
(
a3

2 + a2
1 a2

) ∂a3

∂u
+
(
−a3

1 − a1 a
2
2

) ∂a4

∂u

)

∂v1

∂u
=
∂a4

∂u

(
∂a1

∂u

)T

− ∂a3

∂u

(
∂a2

∂u

)T

− ∂a2

∂u

(
∂a3

∂u

)T

+
∂a1

∂u

(
∂a4

∂u

)T

+ a4
∂2a1

∂u2
− a3

∂2a2

∂u2
− a2

∂2a3

∂u2
+ a1

∂2a4

∂u2

∂v2

∂u
=
∂a1

∂u

(
∂a1

∂u

)T

+
∂a2

∂u

(
∂a2

∂u

)T

+ a1
∂2a1

∂u2
+ a2

∂2a2

∂u2

Second derivatives:

(
∂2a1

∂u2

)
ij

=


h0 sin(ϕ0) ij = (3, 3)

−h1 sin(ϕ1) ij = (6, 6)

0 otherwise(
∂2a3

∂u2

)
ij

=

{
h0 sin(ϕ0) ij = (3, 3)

0 otherwise

(
∂2a2

∂u2

)
ij

=


−h0 cos(ϕ0) ij = (3, 3)

h1 cos(ϕ1) ij = (6, 6)

0 otherwise(
∂2a4

∂u2

)
ij

=

{
−h0 cos(ϕ0) ij = (3, 3)

0 otherwise

3.4.3 Broadphase Algorithm

TODO
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Chapter 4

Solving the Equations of Motion

4.1 Static Solution

Static solution in context of bow: Bracing and equilibrium path, necessity for load control
and displacement control

A System with the equation of motion

M ü+ q(u, u̇) = p (4.1)

is in static equilibrium if u̇, ü = 0, leading to the static equilibrium condition

q(u, 0) = p (4.2)

for the displacements u and the external loads p. This is a nonlinear system of equations
and can be interpreted as the internal elastic forces q being in balance with the external
loads.

4.1.1 The Basic Newton-Raphson Method

Most frequently, when solving static problems, the external loads are given and the task
is to calculate the corresponding equilibrium displacements. Equation (4.2) is then a
nonlinear system of equations in u. Solving it can only be done numerically except for
very simple examples.

An often used method for this kind of problem is the Newton-Raphson method. The basic
idea behind it is to linearise the equilibrium equation (4.2) around a known displacement
vector ui and solve the resulting linear equation to obtain an improved approximation ui+1.
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Starting with an initial value u0 the procedure is repeated until the solution is accurate
enough by some convergence criterion.

Linearising of (4.2) yields

q(ui) +

(
∂q

∂u

∣∣∣∣
ui

)
︸ ︷︷ ︸

K(ui)

(ui+1 − ui)︸ ︷︷ ︸
∆ui

= p (4.3)

Solving for ∆ui leads to the iterative procedure

∆ui = K−1(ui) (p− q(ui)) , (4.4)

ui+1 = ui + ∆ui. (4.5)

In the implementation the tangent stiffness matrix is not actually inverted, because that’s
expensive and potentially inaccurate. Instead, ∆ui is obtained by solving the equivalent
linear system of equations using a decomposition of the stiffness matrix. The symmetry
of the tangent stiffness can be used here. (It isn’t necessarily positive definite though, like
the stiffness matrices of linear mechanical systems.)

Convergence criteria are usually formulated in terms of change in displacement ∆u, the
residuum p − q or their product ∆uT(p − q) (which has the dimension of an energy).
We will use the energy criterion

∆uT
i (p− q(ui)) < ε

The basic Newton-Raphson method can be improved and extended in many ways, for
example by combining it with a line search or by avoiding the calculation of the tangent
stiffness matrix at every iteration (simplified Newton-Raphson method, BFGS method
[Source]).

4.1.2 Constrained Newton-Raphson method

In the previous section the Newton-Raphson method was applied to the problem of calcu-
lating the equilibrium displacements of a system when all applied forces are known. This
method is used in VirtualBow for finding the braced equilibrium state of the bow (see
section [Reference]). However, when calculating the draw curve we don’t actually know
the draw forces, just the displacement of the string center. Also: Load decrease.

A solution to this is displacement control, where we prescribe a value for one of the
displacement components and instead treat the corresponding external forces as a variable
that is determined during solution.
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The following derivation has been adapted from [?]. Displacement control is a special
case of a wider class of methods where the equilibrium equations are modified as

q(u)− λp = 0, (4.6)

c(u, λ) = 0. (4.7)

Here the external forces are scaled by the unknown load factor λ. To compensate for
this additional unknown, a scalar constraint c(u, λ) = 0 on the displacements and the
load parameter is introduced. Depending on the choice of constraint the method can
be turned into load control, displacement control or other more sophisticated schemes
like the arc-length method. We will carry out the derivation for the general case and
specify the constraints later. This is also how these methods are implemented in Virtual-
Bow: A general implementation for arbitrary constraints that is then specialized into load
controlled and displacement controlled methods by providing the necessary constraints.

The system of nonlinear equations (4.6), (4.7) has to be solved for the displacements u and
the load parameter λ. Like before, the Newton-Raphson method is used: The equations
are linearised around a given approximation {ui, λi} and solved to obtain an improved
approximiation {ui+1, λi+1}. This is repeated iteratively until displacements and load
parameter satisfy the equilibrium equations (4.6) as well as the constraint equation (4.7)
reasonably well as determined by some convergence criterion.

Carrying out the linearisation leads to the two equations

q(u)− λp ≈ q(ui)− λi p+
∂q

∂u
(ui)︸ ︷︷ ︸

Ki

(ui+1 − ui)︸ ︷︷ ︸
∆ui

−p (λi+1 − λi)︸ ︷︷ ︸
∆λi

≈ q(ui)− λi p+Ki ∆ui − p∆λi (4.8)

c(u, λ) ≈ c(ui, λi) +
∂c

∂u
(ui, λi)(ui+1 − ui) +

∂c

∂λ
(ui, λi)(λi+1 − λi)

≈ c(ui, λi) +
∂c

∂u
(ui, λi) ∆ui +

∂c

∂λ
(ui, λi) ∆λi (4.9)

Equations (4.8) and (4.9) can written as the single linear system of equations[
Ki −p

∂c
∂u

(ui, λi)
∂c
∂λ

(ui, λi)

] [
∆ui

∆λi

]
=

[
λi p− q(ui)
−c(ui, fi)

]
. (4.10)

Solving this for the increments in displacement and load factor {∆ui, ∆λi} allows us to
calculate the next values as

ui+1 = ui + ∆ui (4.11)

λi+1 = λi + ∆λi. (4.12)
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However, directly solving (4.10) is not numerically efficient because the augmented stiff-
ness matrix is no longer symmetric. A much better way to solve this is block elimination.
We use the first row of (4.10) to express ∆ui as

∆ui = α+ β∆λi. (4.13)

With the auxiliary vectors

α = K−1
i (λi p− q(ui)) (4.14)

β = K−1
i p (4.15)

These can be computed efficiently by exploiting the symmetry of the stiffness matrix Ki.
To calculate ∆λi, we substitute (4.13) into the second row of (4.10) which gives us

∂c

∂u
(ui, λi)∆ui +

∂c

∂λ
(ui, λi) ∆λi = −c(ui, λi)

∂c

∂u
(ui, λi)(α+ β∆λi) +

∂c

∂λ
(ui, λi) ∆λi = −c(ui, λi)

...

∆λi = −
c(ui, λi) + ∂c

∂u
(ui, λi)α

∂c
∂u

(ui, λi)β + ∂c
∂λ

(ui, λi)
. (4.16)

The Newton-Raphson iteration is now complete. To summarize: First, calculate α and β
by solving (4.14) and (4.15). Then calculate the increment of the load parameter by
using (4.16). The increment in displacements is then obtained by equation (4.13).

4.1.3 Constraints for load- and displacement control

Finally, the constraint function and the parametrisation of the load vector have to be cho-
sen. To get a displacement controlled method as initially stated we choose the constraint
function as

c(u, λ) = u(k) − u (4.17)

where uk is the k-th component of the displacement vector that we want to control and
u is the prescribed value for it. The partial derivatives are

∂c

∂u
= ek,

∂c

∂λ
= 0,

with ek being the k-th unit vector. If a load controlled method is needed instead, the
constraint becomes

c(u, λ) = λ− λ, (4.18)

with the desired load factor λ. Partial derivatives:

∂c

∂u
= 0,

∂c

∂λ
= 1,
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4.1.4 Line search

There is one last extension to the Newton-Raphson method that is needed for our purposes
and that is line search.

Todo: Explain line search and why it helps with contact handling
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4.1.5 Finding the Braced Equilibrium State

Length of the string...

4.2 Dynamic Solution

The equations of motion together with the initial displacements u0 and velocities v0 of
the system form the second-order initial value problem

Mü+ q(u, ü) = p, u(0) = u0, ü(0) = v0. (4.19)

for the displacements u(t).

Numerical solution methods for initial value problems can be grouped into explicit and
implicit ones. Explicit methods use the current state of the system at time t to calculate
the next state at t+∆t. Implicit methods instead find the next state by solving an equation
that involves the current and the next state. In the context of finite element analysis,
implicit methods require equilibrium iterations at every time step involving the system’s
tangent stiffness matrix, while explicit methods only require simple vector operations.
Implicit methods therefore have a higher computational cost per step, but can make up
for it by requiring less steps overall, as their better stability allows them to use much larger
step sizes than explicit methods.

Explicit methods are easier to implement and are a good choice for small time scales, like
impact and wave propagation problems. They are most effective when the computation of
the time steps is fast, so they work well with constant, diagonal (lumped) mass matrices
and simple elements with low-order shape functions.

Implicit methods in contrast are well suited for larger time scales, where explicit algorithms
would need too many steps. Examples are structural response problems or numerically
stiff systems, i.e. systems whose eigenfrequencies range from very small to very large.

VirtualBow currently uses the central difference method [15], which is an explicit method
often used in FEM. Based on it’s properties and the advantages of explicit methods it
seems like a good choice. However, implicit methods have not yet been tested with
VirtualBow. The Newmark-beta method Source for example might be worth a try.

VirtualBow previously used the Runge-Kutta-Fehlberg-7-8 method provided by the the
odeint library. It performed worse than the central difference method, probably because
of the high number of function evaluations carried out by an order 7/8 Runge-Kutta
scheme. The big advantage however was the timestep control based on error estimation,
which meant that absolutely no user input regarding the timestep was necessary.
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4.2.1 The Central Difference Method

The continuous solution u(t) is approximated by the discrete values ui = u(ti) at the
equidistant time steps ti = i ·∆t, i ∈ N. The acceleration üi can be approximated by a
central difference quotient as

üi =
ui+1 − 2ui + ui−1

∆t2
(4.20)

Solving for ui+1 and calculating the accelerations üi from the equation of motion (4.19)
leads to

ui+1 = 2ui − ui−1 + ∆t2 üi

= 2ui − ui−1 + ∆t2M−1(pi − qi). (4.21)

This expression is already the core of the method, it allows the calculation of the next dis-
placements ui+1 from the current and previous system states. It only involves cheap vector
operations as the mass matrix is diagonal and doesn’t have to be ”actually” inverted.

Only the velocity is still missing. For this the central difference quotients of the displace-
ments ui+1, ui and ui−1 are used to calculate the intermediate velocities

u̇i+ 1
2

=
ui+1 − ui

∆t
, (4.22)

u̇i− 1
2

=
ui − ui−1

∆t
. (4.23)

The actual new velocity u̇i+1 is linearly extrapolated from those,

u̇i+1 = u̇i+ 1
2

+
1

2

(
u̇i+ 1

2
− u̇i− 1

2

)
,

=
1

∆t

(
3

2
u̇i+1 − 2 u̇i +

1

2
u̇i−1

)
. (4.24)

This last step is actually a custom modification as far as I can tell. All descriptions of the
central difference method that I’ve seen end with the calculation of u̇i+ 1

2
.

The initialisation of the procedure needs some special attention, as the method uses the
previous displacements ui−1 that don’t exist yet at time t = 0. Instead, u−1 is estimated
by using finite difference approximations of the system’s initial velocity and acceleration:

37



u̇0 =
u1 − u−1

2 ∆t
, (4.25)

ü0 =
u1 − 2u0 + u−1

∆t2
, (4.26)

⇒ u−1 = u0 −∆t u̇0 +
∆t2

2
ü0. (4.27)

A last but very important question is how to choose the timestep ∆t. The timestep
influences the computational effort, the accuracy of the solution but most importantly the
stability of the algorithm. A too large time step will lead to a solution that ”explodes”
numerically. For linear, conservative mechanical systems of the form

Mü+Ku = p (4.28)

the stability condition is

∆t ≤ 2

ωmax
(4.29)

where ωmax is the maximum natural frequency [15] of the system. Unfortunately there is
no such analytical bound on ∆t that guarantees stability for nonlinear systems. A common
thing to do is to linearise the system around the current configuration and apply (4.29)
anyway. A safety factor 0 < β < 1 is introduced to account for the uncertainties and the
timestep is set to

∆t = β
2

ωmax
. (4.30)

This doesn’t guarantee stability in a strict sense, but it’s okay for practical purposes. A
common choice is β = 0.9 but VirtualBow uses a lower value for the sake of robustness.
The frequency ωmax is sometimes estimated by using the bound

ωmax ≤ max
i
{ωmax, i} (4.31)

where ωmax, i is the maximum natural frequency of the respective finite element i. But
this leads to larger time steps than necessary and actually causes more implementation
effort than just solving the generalised eigenvalue problem
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(
M − ω2K

)
ū = 0 (4.32)

which is what VirtualBow does.

No damping here. For a version with damping see the LS-Dyna theoretical manual of
2006.

4.2.2 Stopping Criterion and Progress Estimation

The dynamic simulation is carried out until some stopping criterion is satisfied. This
criterion has to be chosen such that the simulated time interval contains all the information
needed by the users while also keeping it as short as possible. It has to include the
separation of the arrow from the string plus some additional time, because some things
like e.g. the maximum force on the string tend to happen only after the arrow left the
bow. A related requirement on the stopping criterion is that it must allow estimating the
simulation progress, so that it can be shown to the user.

The simplest solution would be to simulate until a fixed time is reached. This makes the
progress estimation very easy, but it also has some drawbacks. It would require users to
specify the simulation time, which can only be found by trial and error and might have to
be adjusted for different bows.

The current approach is to simulate the time interval [0, α T ] where T is the time for
the arrow to reach brace height and α is an arbitrary positive factor. The default value
is α = 1.5. The simulation progress at time t can now be written as

progress =
t

αT
· 100%. (4.33)

But only formally, because T is not yet known as long as t < T , i.e. as long as the
arrow has not yet actually reached brace height. For this first part of the simulation T
is estimated by using the current time t, arrow position u and arrow velocity v and
extrapolating to the time when the arrow will reach the braced position uT . Assuming
constant velocity, which is a very crude approximation, we can extrapolate the arrow
position as

u(t) = ū+ v̄(t− t̄). (4.34)

Now T can be calculated from by using the condition u(T ) = uT , with results in

T =
uT − ū
v̄

+ t̄. (4.35)

This approximation is far from exact, but it is good enough for progress estimation and
gets better the closer the arrow is to the braced position. After the arrow has reached the
braced position, the actual value of T is known and used for the rest of the simulation.
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4.3 Model setup

4.3.1 Finding the damping parameters

The damping parameter ηA of the string is determined analytically such that the damping
ratio associated with the first (longitudinal) natural frequency matches the user supplied
value. From Appendix A it follows that

ηA =
4L

π

√
ρAEAζ (4.36)

in order for this to be true, where L is half the total length of the string to match the
boundary conditions used.

4.3.2 Distributing string elements

Figure 4.1: Problem

Problem: Find a point P on the line between A and B which has the euclidean distance
d to point C.

Parametrisation of the points P :

P (η) = A+ η (B − A), η ∈ [0, 1]

Distance condition:
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‖C − P (η)‖ = d

⇔‖
[
cx − ax − η (bx − ax)
cy − ay − η (by − ay)

]
‖ = d

⇔ (cx − ax − η (bx − ax))2 + (cy − ay − η (by − ay))2 = d2

⇔
(
(bx − ax)2 + (by − ay)2

)
η2 − 2 ((cx − ax)(bx − ax) + (cy − ay)(by − ay)) η

+ (cx − ax)2 + (cy − ay)2 − d2 = 0

This is a quadratic equation for η. Take smallest solution in [0, 1].
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Chapter 5

Model Validation

A very important task in the development of this software is to make sure that the results
obtained by simulation agree reasonably well with real world examples. This section shows
the validation efforts made so far. It is still very sparse, so if you have used this program
for a real world application, let me know about your results and they will be added here.

Statics of a straight steel bow

In this experiment the draw curve and limb shapes of a small steel bow with a constant
cross section have been measured and compared to version 2014.4 of Bow Simulation
Tool (now VirtualBow). The bow is shown in figure 5.1 and has been made from an
old saw blade. Steel is a good material for this kind of test because of its homogenous
mechanical properties. The elastic modulus was assumed to be E = 210 GPa which is a
good estimate for most types of steel.
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Figure 5.1: Steel bow. Cross section: 16.85 × 0.75mm. Length: 269mm. Brace
heighth: 49.8mm

The experiment was carried out by hanging a plastic bag at the string center. The draw
force was then gradually applied by counting steel balls with a known mass into the bag.
After every load step the draw length was measured and a photo of the bow was taken.

Figure 5.2 shows a comparison between the measured and the simulated draw curve and
figure 5.3 compares the pictures of the limb against the simulated limb shapes.
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Figure 5.2: Experimental and simulated draw curves

Figure 5.3: Experimental and simulated limb shapes
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The agreement between experiment and simulation is surprisingly good here. It really
shows the potential of such kinds of simulations, provided that the material properties are
well known and a the bow can be built exactly as simulated, with low tolerances.

But this is still a very simple example. The next step would be to repeat this experiment
with bows that have varying cross sections and non-straight profiles. Another open ques-
tion are the dynamic simulation results. It’s unclear if they can match experiments as
good as the static results do, because there are much more uncertainties involved.
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Appendix A

Vibrations of a viscoelastic bar

Consider the elastic bar shown in figure A.1. It is fixed on the left hand side and free
on the right, has a length of L and can undergo longitudinal motion as described by
the function u(x, t). We want to calculate its (undamped) natural frequencies ω0 and
associated damping ratios ζ.

Figure A.1: Kinematics and boundary conditions of the bar

The material of the bar is assumed to behave according to the viscoelastic Kelvin-Voigt
model, which expresses the stress σ in the bar as

σ = E ε+ η ε̇ (A.1)

where ε = ∂ u
∂ x

is the longitudinal strain, E the elastic modulus and η the viscosity of the
material. The acceleration at every point in the bar is given by Source?

ρ
∂2 u

∂ t2
=
∂ σ

∂ x
(A.2)

where ρ is the bar’s density. Combining the equations (A.1) and (A.2) and multiplying
with the cross section area A results in the equation of motion

ρA
∂2 u

∂ t2
= EA

∂2 u

∂ x2
+ ηA

∂3 u

∂ x2 ∂ t
. (A.3)
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This partial differential equation can be solved by separation of variables. The solution
is assumed as u(x, t) = X(x)T (t), a product of two functions depending on x and
t respectively. Inserting this into the equation of motion (A.3) and separating terms
depending on x from terms depending on t leads to

ρAX(x) T̈ (t) = EAX ′′(x)T (t) + ηAX ′′(x) Ṫ (t)

X ′′(x)

X(x)
=

T̈ (t)
EA
ρA
T (t) + ηA

ρA
Ṫ (t)

=: − ρA
EA

ω2
0 (A.4)

Apply the usual argument: As one side of the equation depends on position and the other
on time they have to be constant in order to be equal. We choose that constant to be
− ρA
EA

ω2
0 and obtain the two ordinary differential equations

T̈ (t) +
ηA

EA
ω2

0 Ṫ (t) + ω2
0 T (t) = 0, (A.5)

X ′′(x) +
ρA

EA
ω2

0 X(x) = 0. (A.6)

The time equation (A.5) describes a damped harmonic oscillator with undamped natural
frequency ω0 and damping ratio

ζ =
1

2

η A

EA
ω0 (A.7)

as determined by the coefficients of the equation. The last remaining task is to determine
the natural frequencies ω0 which solve the second differential equation (A.6) while also
satisfying the boundary conditions of the bar. The general solution of (A.6) is

X(x) = C · sin

(√
ρA

EA
ω0 x− ϕ

)
. (A.8)

Boundary condition on the fixed end:

u(0, t) = 0 : X(0)T (t) = 0

C · sin(−ϕ) = 0

ϕ = 0 (A.9)

The case T (t) = 0 was ignored here because it is of no interest. The boundary condition
for the free end is

σ(L, t) = 0 : E ε(L, t) + η ε̇(L, t) = 0

EA
∂u

∂x
(L, t) + ηA

∂2u

∂x ∂t
(L, t) = 0

EAX ′(L)T (t) + ηAX ′(L) Ṫ (t) = 0

(EAT (t) + ηA Ṫ (t))X ′(L) = 0

T̈ (t)X ′(L) = 0
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And therefore the solution for the natural frequencies is

X ′(L) = C ·
√
ρA

EA
ω0 cos

(√
ρA

EA
ω0 L

)
= 0,

ω0 =
π(2k − 1)

2L
·

√
EA

ρA
, k ∈ Z. (A.10)

And finally, with equations (A.7) and (A.10) the damping ratio follow as

ζ =
π(2k − 1)

4L
· ηA√

ρA · EA
, k ∈ Z. (A.11)
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Appendix B

Cubic Spline Interpolation

Cubic splines are used to define some of the geometric features of the bow, namely the
profile curve, width and layer heights.

B.1 Cubic C2 Spline

Consider n points (x0, y0) . . . (xn−1, yn−1) with increasing values of x. We define the
differences ∆xi = xi+1 − xi and ∆yi = yi+1 − yi as well as the slope δi = ∆yi/∆xi of
the secant line between two successive points.

For each interval x ∈ [xi, xi+1] the data is interpolated by the cubic polynomial

fi(x) = h00(t) yi + h10(t)∆ximi + h01(t) yi+1 + h11(t)∆ximi+1 (B.1)

f ′i(x) =
h′00(t)

∆xi
yi + h′10(t)mi +

h′01(t)

∆xi
yi+1 + h′11(t)mi+1 (B.2)

f ′′i (x) =
h′′00(t)

∆x2
i

yi +
h′′10(t)

∆xi
mi +

h′′01(t)

∆x2
i

yi+1 +
h′′11(t)

∆xi
mi+1 (B.3)

where yi, yi+1 and mi, mi+1 are the values and slopes at the interval boundaries, respec-
tively and h00(t) . . . h11(t) are the hermite basis functions, defined as

h00(t) = 2 t3 − 3 t2 + 1

h10(t) = t3 − 2 t2 + t

h01(t) = −2 t3 + 3 t2

h11(t) = t3 − t2

h′00(t) = 6 t2 − 6 t

h′10(t) = 3 t2 − 4 t+ 1

h′01(t) = −6 t2 + 6 t

h′11(t) = 3 t2 − 2 t

h′′00(t) = 12 t− 6

h′′10(t) = 6 t− 4

h′′01(t) = −12 t+ 6

h′′11(t) = 6 t− 2

(B.4)

with t = (x− xi)/(xi+1 − xi). The resulting spline by definition already interpolates the
given function values and is C1 continuous since adjacent segments share the same value
and slope at the interval boundaries. To determine the n unknown slopes mi we require
the second derivatives at the connection points to match as well, making the curve C2
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continuous. This gives us n − 2 continuity conditions, leaving two more conditions to
make the problem uniquely determined. Those additional conditions are obtained from
boundary considerations, e.g. by specifying the spline’s first and/or second derivatives at
the left and right endpoints.

Continuity conditions f ′′i−1(xi) = f ′′i (xi) for i = 1 . . . n− 2:

h′′00(1)

∆x2
i−1

yi−1 +
h′′10(1)

∆xi−1

mi−1 +
h′′01(1)

∆x2
i−1

yi +
h′′11(1)

∆xi−1

mi =
h′′00(0)

∆x2
i

yi +
h′′10(0)

∆xi
mi +

h′′01(0)

∆x2
i

yi+1 +
h′′11(0)

∆xi
mi+1

−2

∆xi
mi+1 +

(
−4

∆xi
− 4

∆xi−1

)
mi −

2

∆xi−1

mi−1 =
6 yi−1 +−6 yi

∆x2
i−1

− −6 yi + 6 yi+1

∆x2
i

1

∆xi
mi+1 + 2

(
1

∆xi
+

1

∆xi−1

)
mi +

1

∆xi−1

mi−1 = 3

(
∆ yi
∆x2

i

+
∆yi−1

∆x2
i−1

)
∆xi−1mi+1 + 2 (∆xi + ∆xi−1) mi + ∆ximi−1 = 3 (δi ∆xi−1 + δi−1 ∆xi) (B.5)

Boundary condition f ′′0 (0) = y′′0 :

h′′00(0)

∆x2
0

y0 +
h′′10(0)

∆x0

m0 +
h′′01(0)

∆x2
0

y1 +
h′′11(0)

∆x0

m1 = y′′0

−6

∆x2
0

y0 +
−4

∆x0

m0 +
6

∆x2
0

y1 +
−2

∆x0

m1 = y′′0

4m0 + 2m1 = 6 δ0 −∆x0 y
′′
0 (B.6)

Boundary condition f ′′n−2(1) = y′′n−1:

h′′00(1)

∆x2
n−2

yn−2 +
h′′10(1)

∆xn−2

mn−2 +
h′′01(1)

∆x2
n−2

yn−1 +
h′′11(1)

∆xn−2

mn−1 = y′′n−1

6

∆x2
n−2

yn−2 +
2

∆xn−2

mn−2 +
−6

∆x2
n−2

yn−1 +
4

∆xn−2

mn−1 = y′′n−1

2mn−2 + 4mn−1 = 6 δn−2 + ∆xn−2 y
′′
n−1 (B.7)

Boundary condition f ′0(0) = y′0:
m0 = y′0 (B.8)

Boundary condition f ′n−1(1) = y′n−1:

mn−1 = y′n−1 (B.9)

50



Combining the continuity and boundary conditions gives us the system of equations
a0 b0

. . . . . . . . .

∆xi−1 2(∆xi + ∆xi−1) ∆xi
. . . . . . . . .

an−1 bn−1




m0

...
mi
...

mn−1

 =


c0
...

3 (δi ∆xi−1 + δi−1 ∆xi)
...

cn−1


(B.10)

where a, b and c depend on the choice of boundary conditions. Since the coefficient
matrix has a tridiagonal structure it can be solved very efficiently by using the Thomas
algorithm.

B.2 Monotonicity

Sometimes it is desirable for an interpolating curve to preserve monotonicity of the input
data, i.e. not to introduce any local minima or maxima between the given data points.
In VirtualBow this is used for the width and layer heights, not least to ensure that those
quantities are always positive if the user entered positive values.

One popular method for monotonic cubic interpolation is the Fritsch–Carlson method[17],
which operates on a cubic hermite spline like the one we defined above and adjusts the
slopes according to some simple rules in order to make the spline monotonic within each
interval. The only difference is that Fritsch and Carlson use finite differences to determine
the initial slopes for their spline while we used the condition of C2 continuity.

After the initial slopes were computed, the first necessary condition for monotonicity in
an interval is

sgn(mi) = sgn(mi+1) = sgn(δi) (B.11)

which means that the slopes mi and mi+1 must have the same direction as the slope δi
of the secant. Any slopes that violate this condition are set to zero. With the slopes
modified in this way, define αi = mi/δi and βi = mi+1/δi. A sufficient condition for the
segment to be monotone is

α2
i + β2

i ≤ 9 (B.12)

i.e. the curve must be restricted to a circle of radius 3 in the α-β-plane. If this condition
is violated in any segment, define the factor

τi =
3√

α2
i + β2

i

(B.13)

and rescale the slopes as

mi = τi αi δi, mi+1 = τi βi δi (B.14)

After these modifications the spline will be monotonous within each interval, but may no
longer be C2 continuous. Also the chosen boundary conditions may no longer be fulfilled.
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